The equation $\sqrt {3 {x^2} + x + 5} = x - 3$ , where $x$ is real, has
no solution
exactly one solution
exactly two solution
exactly four solution
If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ is equal to
If $x$ is real, then the maximum and minimum values of expression $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ will be
A man standing on a railway platform noticed that a train took $21\, s$ to cross the platform (this means the time elapsed from the moment the engine enters the platform till the last compartment leaves the platform) which is $88\,m$ long, and that it took $9 s$ to pass him. Assuming that the train was moving with uniform speed, what is the length of the train in meters?
The number of real roots of the equation, $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ is
The number of ordered pairs $(x, y)$ of positive integers satisfying $2^x+3^y=5^{x y}$ is